Strong Solutions to a Kind of Cross Diffusion Parabolic System
نویسندگان
چکیده
منابع مشابه
On Global Existence of Solutions to a Cross-diffusion System
the Laplacian, ∂/∂ν denotes the directional derivative along the outward normal on ∂Ω, ai, bi, ci, di (i = 1, 2) are given positive constants and α, γ, δ, β are nonnegative constants. In the system (1.1) u and v are non-negative functions which represent population densities of two competing species, d1 and d2 are respectively their diffusion rates. Parameters a1 and a2 are intrinsic growth rat...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
A Parabolic Cross-Diffusion System for Granular Materials
A cross-diffusion system of parabolic equations for the relative concentration and the dynamic repose angle of a mixture of two different granular materials in a long rotating drum is studied. The main feature of the system is the ability to describe the axial segregation of the two granular components. The existence of global-in-time weak solutions is shown by using entropy-type inequalities a...
متن کاملAnalysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion
Abstract. The global existence of a non-negative weak solution to a multi-dimensional parabolic strongly coupled model for two competing species is proved. The main feature of the model is that the diffusion matrix is non-symmetric and generally not positive definite and that the non-diagonal matrix elements (the cross-diffusion terms) are allowed to be “large”. The ideas of the existence proof...
متن کاملGlobal Existence of Solutions to a Hyperbolic-parabolic System
In this paper, we investigate the global existence of solutions to a hyperbolic-parabolic model of chemotaxis arising in the theory of reinforced random walks. To get L2-estimates of solutions, we construct a nonnegative convex entropy of the corresponding hyperbolic system. The higher energy estimates are obtained by the energy method and a priori assumptions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2003
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2003.v1.n4.a7